Task Schedule
Time Limit: 1000 MS Memory Limit: 32768 KB
64-bit integer IO format: %I64d , %I64u Java class name: Main
Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
Print a blank line after each test case.
Sample Input
2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
Sample Output
Case 1: Yes Case 2: Yes
Source
2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC
题意:你有m台机器,n个任务。每个任务都有开始时间和截止时间,完成它的时间(可中断)。每个任务每天最多用一台机器(即不可多台机器在同一天做同一个任务),问你能否按时完成所有任务。
思路:源点连机器(权值inf),机器连上每一天(权值1),在对某任务的开始时间到截止时间的每一天都连上此任务(权值1),任务连汇点(权值完成所需时间)。最后判断最大流是否为所有任务完成时间之和即可。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int inf = 2147483647;
const int MAXN = 2000;
struct edge{
int cap,to,rev;
edge(int a = 0,int b = 0,int c = 0):to(a),cap(b),rev(c){}
};
vector<edge> G[MAXN];
int level[MAXN];
int iter[MAXN];
void init()
{
for(int i = 0;i < MAXN;i++){
G[i].clear();
}
}
void Add(int f,int t,int c)
{
G[f].push_back(edge{t,c,G[t].size()} );
G[t].push_back(edge{f,0,G[f].size()-1});
}
void bfs(int s)
{
queue<int >que;
memset(level,-1,sizeof(level));
level[s] = 0;
que.push(s);
while(!que.empty()){
int v = que.front();
que.pop();
for(int i = 0;i < G[v].size();i++){
edge &e = G[v][i];
if(e.cap > 0 && level[e.to] == -1){
level[e.to] = level[v]+1;
que.push(e.to);
}
}
}
}
int dfs(int v,int t,int f)
{
if(v == t) return f;
for(int &i = iter[v];i < G[v].size();i++){
edge &e = G[v][i];
if(e.cap > 0 && level[e.to] > level[v]){
int d = dfs(e.to,t,min(f,e.cap));
if(d > 0){
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int maxd(int s,int t)
{
int flow = 0;
while(true){
bfs(s);
if(level[t] == -1) return flow;
memset(iter,0,sizeof(iter));
int f;
while((f = dfs(s,t,inf))>0 ){
flow += f;
}
}
}
int main()
{
int t;
int Case = 1;
while(scanf("%d",&t) != EOF){
while(t--){
init();
int ren,ji;
int yuan,hui;
scanf("%d%d",&ren,&ji);
yuan = 0;
hui = ren+ji+500+1;
for(int i = 1;i <= ji;i++){
Add(0,i,inf);
for(int j = ji+1;j <= ji+500;j++){
Add(i,j,1);
}
}
int sum = 0;
for(int i = 1;i <= ren;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
for(int j = ji+b;j <= ji+c;j++){
Add(j,ji+500+i,1);
}
sum += a;
Add(ji+500+i,hui,a);
}
int ans = maxd(0,hui);
if(ans == sum){
printf("Case %d: Yes\n\n",Case++);
}
else{
printf("Case %d: No\n\n",Case++);
}
}
}
return 0;
}

6万+

被折叠的 条评论
为什么被折叠?



